A 2× Lax Representation, Associated Family, and Bäcklund Transformation for Circular K-Nets

نویسندگان

  • Tim Hoffmann
  • Andrew O. Sageman-Furnas
چکیده

We present a 2 × 2 Lax representation for discrete circular nets of constant negative Gauß curvature. It is tightly linked to the 4D consistency of the Lax representation of discrete K-nets (in asymptotic line parametrization). The description gives rise to Bäcklund transformations and an associated family. All the members of that family – although no longer circular – can be shown to have constant Gauß curvature as well. Explicit solutions for the Bäcklund transformations of the vacuum (in particular Dini’s surfaces and breather solutions) and their respective ∗T.H. was supported by the DFG-Collaborative Research Center, TRR 109, ”Discretization in Geometry and Dynamics.” †[email protected][email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 20 30 29 v 1 1 8 M ar 2 00 2 A new Lax pair for the sixth Painlevé equation associated with ŝo ( 8 )

In this article, we propose a new representation of Lax type for the sixth Painlevé equation. This representation, formulated in the framework of the loop algebra so(8)[z, z−1] of type D (1) 4 , provides a natural explanation of the affine Weyl group symmetry of PVI. After recalling a standard derivation of PVI, we describe in Section 2 fundamental Bäcklund transformations for PVI. In Section 3...

متن کامل

3 × 3 Lax pairs for the fourth , fifth and sixth Painlevé equations

We obtain 3 × 3 matrix Lax pairs for systems of ODEs that are solvable in terms of the fourth, fifth and sixth Painlevé equations by considering similarity reductions of the scattering Lax pair for the (2+1)-dimensional three-wave resonant interaction system. These results allow us to construct new 3× 3 Lax representations for the fourth and fifth Painlevé equations, together with the previousl...

متن کامل

The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I

We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice str...

متن کامل

Bäcklund Transformation for the BC-Type Toda Lattice

We study an integrable case of n-particle Toda lattice: open chain with boundary terms containing 4 parameters. For this model we construct a Bäcklund transformation and prove its basic properties: canonicity, commutativity and spectrality. The Bäcklund transformation can be also viewed as a discretized time dynamics. Two Lax matrices are used: of order 2 and of order 2n + 2, which are mutually...

متن کامل

Lax pair and Darboux transformation of noncommutative U(N) principal chiral model

We present a noncommutative generalization of Lax formalism of U(N) principal chiral model in terms of a one-parameter family of flat connections. The Lax formalism is further used to derive a set of parametric noncommutative Bäcklund transformation and an infinite set of conserved quantities. From the Lax pair, we derive a noncommutative version of the Darboux transformation of the model. PACS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2016